&7

Hochschule Osnabruck

University of Applied Sciences

An Industrial Case Study on
Data Visualization combining

CPU, FPGA and GPU with the
SAccO Interface

Markus Weinhardt

Small-Scale Heterogeneous Multiprocessing
Thematic Session, Oct. 10, 2014

Outline

» Background: HPVis Project

» SAccO Accelerator Framework

» GPU Extension

» Performance Analysis and Results

» Conclusions and Future Work

Publication:

M. Weinhardt, A. Krieger, Th. Kinder: A Framework for PC Applications
with Portable and Scalable FPGA Accelerators

Proc. Int. Conf. on ReConFigurable Computing and FPGAs, Cancun,
Mexiko, Dec. 2013

Hochschule Osnabriick
University of Applied Sciences

Background: HPVis Project

HPVis: High-Performance Processing and "
Visualization of High-Volume Data S

» Application recast as task-parallel software on
standard PCs where some tasks can be mapped
to FPGA; the other tasks remain unchanged.

- T—

% Europa fordert
+ Niedersachsen
v
#

* & X

» Tasks communicate over streaming interface.
Example visualization task graph:

(restricted to linear =
task graphs/pipelines, _@:@:.@_. g
but multiple channels possible)

» Project requirements:

* For hardware efficiency, application kernels implemented in
optimized VHDL (RTL)

 CPU and FPGA communicate over PCIl-Express (PCle)
» Applications (SW and HW) should be portable and scalable
« Later extended by processing on a GPU (using CUDA)

Hochschule Osnabriick
University of Applied Sciences

Background: HPVis Project

» Main Application:

 Visualization of sensor data gathered by pipeline
inspection "pigs" (mainly for oil and gas pipelines)

« Performance of zooming and scrolling is not sufficient
for human inspectors on PCs, should be accelerated

sssco] T 10.01 mm
0545+
05150
05155+

I N —
06:05 T
06:10
06:15
06:20 0 !

1]

06:25-

]

o) e

nﬁ::: o ! ! s | [1 [“
_‘W:W*lF” 11 ke I:.hl' I ‘H”lwlll “: |:I b le ‘ |-||-|n-|| 1 II‘II‘II"H‘I |\.|1| Im. : \‘\IIII\I‘\‘II““I‘“ *\' I”H Ty I m‘;
sl LTI A LINTTN u ; dopmniin " ‘“L. | qJ LT T

u -
| o 1 |

ssssss I +" R II‘I“.F H ™ I+‘I\]

o ‘ - _ -

08:10
08:15

08:30

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Color Scan View
(Source: Rosen Technology and Research Center)

e
Hochschule Osnabriick
University of Applied Sciences

SAccO Accelerator Framework: API

SAccO: Scalable Accelerator platform Osnabrtick

» Starting Point: Task-parallel implementation of streaming application,
completely in software

» Uses high-level API for both socket-based SW-SW and PCle-based
SW-HW communication

Data Flow (DF) Transfers

uint8_t WriteDF (uint8_t num, void *pval)

uint8_t ReadDF(uint8_t num, void *pval)

uint8_t StreamWriteDF(uint8_t num, void* pdata, uint16_t size)
uint8_t StreamReadDF(uint8_t num, void* pdata, uint16_t size)
uint8_t StreamReadWriteDF(uint8_t rnum, void* prdata, uint16_t rsize,

uint8_t wnum, void* pwdata, uint16_t wsize)

» Automatically detects FPGA board and redirects communication
accordingly (also for cheap PCs w/o FPGA card)

Hochschule Osnabriick
.....................

SAccO Accelerator Framework: HW Implementation Rules

To ensure portability and scalability, some rules are imposed for the
VHDL implementation of the kernels in hardware:

» Portability

« communication: FPGA and board specific features are encapsulated
in PCle wrapper; handshake protocol for synchronization with PCle
data streams

* no direct instantiation of FPGA specific components (Block RAM,
DSP etc.) = infer by synthesis!

 ensure minimal user clock frequency (currently f .., = 125 MHz) for
all designs

» Scalability

 If possible, designs consist of Processing Elements (PEs) which can
be replicated in parallel to adapt to FPGA size and PCle bandwidth
=» implement as many parallel PEs as possible
(semi-automatic, for details see ReConFig’'13 paper)

Hochschule Osnabriick
.....................

SAccO Accelerator Framework: Hardware Architecture

System Architecture:

PC! Express

RAM

CPU

GPU

FPGA

Components:

PCls

FPGA

[PCle Wrapper

PCle
Endpoint Core }—

S

PCle
Control

User Logic with PE Scaling:
User Logic (R=2)
PE: 8-bit input port

PCle PE
Wrap- 32,[FIFO gﬁ[
per PE

|l
Synchronisation
FIFOs

b |
1|

e

System Clock

| — | Note:
User Logic FIFOs traverse
ﬁ: clock domains
and adjust
User Clock buswidth!

OOOOOOOOOOOOOOOO
nnnnnnnnnnnnnnnnnnn

tick

10

SAccO Accelerator Framework: Visualization Application

| Data]

J

Process 1 (SW)

-

-

System Control

J

HDD

Main mem.

8-,

P1

CPU

-

P2

P3

GPU

only
display

=

-

PrRGéss 2 (SW) Process 3 (SW)
r N
Reduction Logic Bitmap Generation
N | J
If API detects FPGA board, socket communication is replaced by PCle
communication. (HW processes are marked in application setup file.)
HDD | Main mem.| FPGA | GPU
SR
display
P2
Dataflow extended D
by FPGA component El‘/_rP_
(entire bitmap)

Hochschule Osnabriick
Unive ien:

(entire bitmap)

GPU Extension

» Project c_extension: Process 3 (Bitmap Dataflow CPU+GPU:
Generation) accelerated by CUDA ,
kernels on a NVIDIA GPU HDD | Main e Geu
* Not entire task on GPU, just kernels _"_T_ (C0RY
* Remaining parts of Process 3 on CPU P2 g
» Data copied in blocks by —*F ’,i
cudaMemcpyAsync (), hot as control | P3
streams with the SAccO API
« Bitmap directly copied to OpenGL
texture and visualized
» Combination with FPGA and GPU Dataflow CPU+FPGA+GPU:
 No direct FPGA->GPU transfer HDD | Main ”Z:eP”Z} FPGA (CGLZLA{)
implemented yet = P1

* Next step: use GPUdirect RDMA? P2 \
(for NVIDIA Kepler/Maxwell GPUs) P31 o3

control |

Hochschule Osnabriick
nnnnnnnnnnnnnnnnnnnnn

Performance Analysis and Results

Simplifying assumption: All processes and transfers overlap

=» Overall performance limited by component with lowest throughput
» HDD->main memory (host) transfer rate: = 100 MB/s
P1 (host): No processing, limited by transfer rates

Host>FPGA: = 137 MB/s (SP605, PCle x1 Gen1),
~ 1099 MB/s (ML605, PCle x8 Gen1)

P2 (FPGA) - not optimized: Input values consumed at = 32 MB/s
FPGA->host: = 172 MB/s (SP605), = 1373 MB/s (ML605)
Host>GPU: =12 GB/s (GTX750 Ti, PCle x16 Gen3)

P3 (GPU): Pixels produced in CUDA mem. at = 30 GB/s (GTX750 Ti)

CUDA memory->0OpenGL texture: = 80 GB/s
Note: Not overlapped with CUDA bitmap generation!

vy

vV v VVvVYy

Results:

» Speedup 6x - 9x achieved for P3 on GPU including Host->GPU transfer.
Overall system speedup depends on data set, PCle system.

» P2 on FPGA is a performance bottleneck, must be further optimized.

&7

ccccccccccccccccccc
University of Applied Sciences

Conclusions and Future Work

Conclusions

» Our portable and scalable approach simplifies implementation of
streaming applications on PCs without and with FPGA boards, can be
extended with CUDA kernels on GPU.

» For such heterogeneous systems, many manual optimizations are
required, e. g. further optimization of FPGA design (P2).

» In our application, GPU processing (P3) is bandwidth-limited.

Future Work

» Implement Reduction Process P2 on GPU as well
=>» only one PCle Geng transfer (will probably be fastest solution)

» Direct PCle communication FPGA->GPU (GPUdirect or other)
» Use High-Level Synthesis for FPGA
» Include memory access on FPGA boards

Thank you! Time for questions...

&)
Hochschule Osnabriick 1 4
University of Applied Sciences

