
Markus Weinhardt

Small-Scale Heterogeneous Multiprocessing

Thematic Session, Oct. 10, 2014

An Industrial Case Study on 
Data Visualization combining 
CPU, FPGA and GPU with the 

SAccO Interface



Outline

► Background: HPVis Project

► SAccO Accelerator Framework

► GPU Extension

► Performance Analysis and Results

► Conclusions and Future Work

5

Publication:
M. Weinhardt, A. Krieger, Th. Kinder: A Framework for PC Applications
with Portable and Scalable FPGA Accelerators

Proc. Int. Conf. on ReConFigurable Computing and FPGAs, Cancun, 
Mexiko, Dec. 2013

HiPEAC Computing Systems Week, Athens



Background: HPVis Project

HPVis: High-Performance Processing and

Visualization of High-Volume Data

► Application recast as task-parallel software on

standard PCs where some tasks can be mapped
to FPGA; the other tasks remain unchanged.

► Tasks communicate over streaming interface.

Example visualization task graph:
(restricted to linear

task graphs/pipelines,

but multiple channels possible)

► Project requirements:

• For hardware efficiency, application kernels implemented in 
optimized VHDL (RTL)

• CPU and FPGA communicate over PCI-Express (PCIe)

• Applications (SW and HW) should be portable and scalable

• Later extended by processing on a GPU (using CUDA)

6HiPEAC Computing Systems Week, Athens



Background: HPVis Project

► Main Application:

• Visualization of sensor data gathered by pipeline 
inspection "pigs" (mainly for oil and gas pipelines)

• Performance of zooming and scrolling is not sufficient 
for human inspectors on PCs, should be accelerated

7

Color Scan View
(Source: Rosen Technology and Research Center)

HiPEAC Computing Systems Week, Athens



SAccO Accelerator Framework: API

SAccO: Scalable Accelerator platform Osnabrück

► Starting Point: Task-parallel implementation of streaming application, 
completely in software

► Uses high-level API for both socket-based SW-SW and PCIe-based 
SW-HW communication

► Automatically detects FPGA board and redirects communication 
accordingly (also for cheap PCs w/o FPGA card)

8

Data Flow (DF) Transfers

uint8_t WriteDF(uint8_t num, void *pval)

uint8_t ReadDF(uint8_t num, void *pval)

uint8_t StreamWriteDF(uint8_t num, void* pdata, uint16_t size)

uint8_t StreamReadDF(uint8_t num, void* pdata, uint16_t size)

uint8_t StreamReadWriteDF(uint8_t rnum, void* prdata, uint16_t rsize,

uint8_t wnum, void* pwdata, uint16_t wsize)

HiPEAC Computing Systems Week, Athens



SAccO Accelerator Framework: HW Implementation Rules

To ensure portability and scalability, some rules are imposed for the 
VHDL implementation of the kernels in hardware:

► Portability

• communication: FPGA and board specific features are encapsulated 
in PCIe wrapper; handshake protocol for synchronization with PCIe
data streams

• no direct instantiation of FPGA specific components (Block RAM, 
DSP etc.)  infer by synthesis!

• ensure minimal user clock frequency (currently fuser = 125 MHz) for 
all designs

► Scalability

• if possible, designs consist of Processing Elements (PEs) which can 
be replicated in parallel to adapt to FPGA size and PCIe bandwidth
 implement as many parallel PEs as possible

(semi-automatic, for details see ReConFig’13 paper)

9HiPEAC Computing Systems Week, Athens



System Architecture:

FPGA Components:

SAccO Accelerator Framework: Hardware Architecture

32
bit

FIFO
PCIe 
Wrap-

per
PE

User Logic (R=2)

16
bit

PE

PE

PE: 8-bit input port

User Logic with PE Scaling:

HiPEAC Computing Systems Week, Athens 10

Note:

FIFOs traverse 

clock domains

and adjust

buswidth!

…



SAccO Accelerator Framework: Visualization Application

If API detects FPGA board, socket communication is replaced by PCIe 
communication. (HW processes are marked in application setup file.)

P1

System Control

SAccO API

PCIe Socket

Process 1 (SW)

P1

Reduction Process

SAccO API

PCIe Socket

Process 2 (SW)

P1

Bitmap Generation

SAccO API

PCIe Socket

Process 3 (SW)

P1

Reduction Logic

SAccO Logic

PCIe

FPGA

Data

11HiPEAC Computing Systems Week, Athens

P1

P2

P3

HDD Main mem.

CPU

FPGA GPU
only

display

(entire bitmap)

P1

P2

HDD Main mem.

CPU
GPU
only

display

(entire bitmap)

P3
Dataflow extended

by FPGA component



GPU Extension

► Project extension: Process 3 (Bitmap 
Generation) accelerated by CUDA
kernels on a NVIDIA GPU

• Not entire task on GPU, just kernels

• Remaining parts of Process 3 on CPU

• Data copied in blocks by 
cudaMemcpyAsync(), not as 

streams with the SAccO API

• Bitmap directly copied to OpenGL 

texture and visualized

► Combination with FPGA and GPU

• No direct FPGAGPU transfer 
implemented yet

• Next step: use GPUdirect RDMA?
(for NVIDIA Kepler/Maxwell GPUs)

12HiPEAC Computing Systems Week, Athens

Dataflow CPU+FPGA+GPU:

P1

P2

P3

HDD Main mem.

CPU 

FPGA GPU
(CUDA)

P3
control

P1

P2

HDD Main mem.

CPU
GPU

(CUDA)

P3
control P3

Dataflow CPU+GPU:



Performance Analysis and Results

Simplifying assumption: All processes and transfers overlap

 Overall performance limited by component with lowest throughput

► HDDmain memory (host) transfer rate: ≈ 100 MB/s

► P1 (host): No processing, limited by transfer rates

► HostFPGA: ≈ 137 MB/s (SP605, PCIe x1 Gen1),
≈ 1099 MB/s (ML605, PCIe x8 Gen1)

► P2 (FPGA) - not optimized: Input values consumed at ≈ 32 MB/s

► FPGAhost: ≈ 172 MB/s (SP605), ≈ 1373 MB/s (ML605)

► HostGPU: ≈ 12 GB/s (GTX750 Ti, PCIe x16 Gen3)

► P3 (GPU): Pixels produced in CUDA mem. at ≈ 30 GB/s (GTX750 Ti)

► CUDA memoryOpenGL texture: ≈ 80 GB/s
Note: Not overlapped with CUDA bitmap generation!

Results:

► Speedup 6x - 9x achieved for P3 on GPU including HostGPU transfer.
Overall system speedup depends on data set, PCIe system.

► P2 on FPGA is a performance bottleneck, must be further optimized.

13HiPEAC Computing Systems Week, Athens



Conclusions and Future Work

Conclusions

► Our portable and scalable approach simplifies implementation of 
streaming applications on PCs without and with FPGA boards, can be 

extended with CUDA kernels on GPU.

► For such heterogeneous systems, many manual optimizations are 
required, e. g. further optimization of FPGA design (P2).

► In our application, GPU processing (P3) is bandwidth-limited.

Future Work

► Implement Reduction Process P2 on GPU as well
 only one PCIe Gen3 transfer (will probably be fastest solution)

► Direct PCIe communication FPGAGPU (GPUdirect or other)

► Use High-Level Synthesis for FPGA

► Include memory access on FPGA boards

14HiPEAC Computing Systems Week, Athens


