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Background: HPVis Project

HPVis: High-Performance Processing and

Visualization of High-Volume Data

► Application recast as task-parallel software on

standard PCs where some tasks can be mapped
to FPGA; the other tasks remain unchanged.

► Tasks communicate over streaming interface.

Example visualization task graph:
(restricted to linear

task graphs/pipelines,

but multiple channels possible)

► Project requirements:

• For hardware efficiency, application kernels implemented in 
optimized VHDL (RTL)

• CPU and FPGA communicate over PCI-Express (PCIe)

• Applications (SW and HW) should be portable and scalable

• Later extended by processing on a GPU (using CUDA)
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Background: HPVis Project

► Main Application:

• Visualization of sensor data gathered by pipeline 
inspection "pigs" (mainly for oil and gas pipelines)

• Performance of zooming and scrolling is not sufficient 
for human inspectors on PCs, should be accelerated
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Color Scan View
(Source: Rosen Technology and Research Center)
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SAccO Accelerator Framework: API

SAccO: Scalable Accelerator platform Osnabrück

► Starting Point: Task-parallel implementation of streaming application, 
completely in software

► Uses high-level API for both socket-based SW-SW and PCIe-based 
SW-HW communication

► Automatically detects FPGA board and redirects communication 
accordingly (also for cheap PCs w/o FPGA card)
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Data Flow (DF) Transfers

uint8_t WriteDF(uint8_t num, void *pval)

uint8_t ReadDF(uint8_t num, void *pval)

uint8_t StreamWriteDF(uint8_t num, void* pdata, uint16_t size)

uint8_t StreamReadDF(uint8_t num, void* pdata, uint16_t size)

uint8_t StreamReadWriteDF(uint8_t rnum, void* prdata, uint16_t rsize,

uint8_t wnum, void* pwdata, uint16_t wsize)
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SAccO Accelerator Framework: HW Implementation Rules

To ensure portability and scalability, some rules are imposed for the 
VHDL implementation of the kernels in hardware:

► Portability

• communication: FPGA and board specific features are encapsulated 
in PCIe wrapper; handshake protocol for synchronization with PCIe
data streams

• no direct instantiation of FPGA specific components (Block RAM, 
DSP etc.)  infer by synthesis!

• ensure minimal user clock frequency (currently fuser = 125 MHz) for 
all designs

► Scalability

• if possible, designs consist of Processing Elements (PEs) which can 
be replicated in parallel to adapt to FPGA size and PCIe bandwidth
 implement as many parallel PEs as possible

(semi-automatic, for details see ReConFig’13 paper)
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System Architecture:

FPGA Components:

SAccO Accelerator Framework: Hardware Architecture

32
bit

FIFO
PCIe 
Wrap-

per
PE

User Logic (R=2)

16
bit

PE

PE

PE: 8-bit input port

User Logic with PE Scaling:
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Note:

FIFOs traverse 

clock domains

and adjust

buswidth!

…



SAccO Accelerator Framework: Visualization Application

If API detects FPGA board, socket communication is replaced by PCIe 
communication. (HW processes are marked in application setup file.)
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GPU Extension

► Project extension: Process 3 (Bitmap 
Generation) accelerated by CUDA
kernels on a NVIDIA GPU

• Not entire task on GPU, just kernels

• Remaining parts of Process 3 on CPU

• Data copied in blocks by 
cudaMemcpyAsync(), not as 

streams with the SAccO API

• Bitmap directly copied to OpenGL 

texture and visualized

► Combination with FPGA and GPU

• No direct FPGAGPU transfer 
implemented yet

• Next step: use GPUdirect RDMA?
(for NVIDIA Kepler/Maxwell GPUs)
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Performance Analysis and Results

Simplifying assumption: All processes and transfers overlap

 Overall performance limited by component with lowest throughput

► HDDmain memory (host) transfer rate: ≈ 100 MB/s

► P1 (host): No processing, limited by transfer rates

► HostFPGA: ≈ 137 MB/s (SP605, PCIe x1 Gen1),
≈ 1099 MB/s (ML605, PCIe x8 Gen1)

► P2 (FPGA) - not optimized: Input values consumed at ≈ 32 MB/s

► FPGAhost: ≈ 172 MB/s (SP605), ≈ 1373 MB/s (ML605)

► HostGPU: ≈ 12 GB/s (GTX750 Ti, PCIe x16 Gen3)

► P3 (GPU): Pixels produced in CUDA mem. at ≈ 30 GB/s (GTX750 Ti)

► CUDA memoryOpenGL texture: ≈ 80 GB/s
Note: Not overlapped with CUDA bitmap generation!

Results:

► Speedup 6x - 9x achieved for P3 on GPU including HostGPU transfer.
Overall system speedup depends on data set, PCIe system.

► P2 on FPGA is a performance bottleneck, must be further optimized.
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Conclusions and Future Work

Conclusions

► Our portable and scalable approach simplifies implementation of 
streaming applications on PCs without and with FPGA boards, can be 

extended with CUDA kernels on GPU.

► For such heterogeneous systems, many manual optimizations are 
required, e. g. further optimization of FPGA design (P2).

► In our application, GPU processing (P3) is bandwidth-limited.

Future Work

► Implement Reduction Process P2 on GPU as well
 only one PCIe Gen3 transfer (will probably be fastest solution)

► Direct PCIe communication FPGAGPU (GPUdirect or other)

► Use High-Level Synthesis for FPGA

► Include memory access on FPGA boards
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