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CGRAs for Embedded Systems



CGRAs for Embedded Systems

Basic Principles of CGRAS

>

Alternative to multicore processors for exploiting instruction-level and
loop-level parallelism

2D array of Processing Elements containing ALUs and interconnect

Similar to FPGAs, but with ALUs instead of look-up tables, word-wide
instead of bit-wide connections

In most cases, dataflow graphs (DFGs) of inner loop kernels are mapped
to the Processing Elements (PESs)

e Parallelization/Vectorization required to enable loop pipelining!

Implementation
» As ASIC or part of a SoC
» As FPGA overlay (,Virtual CGRA")

HHHHHHHH

=>» flexible, but less efficient (introduces another configuration layer)
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CGRAs for Embedded Systems: Single-Context

» Early CGRAs directly mapped DFGs to ALUs (1:1), aiming at a balanced
pipeline = high parallelism, high throughput
e Placement and Routing similar to FPGA tools
» Examples
o Xputer (rDPU/KressArray) — Prof. Hartenstein, Univ. Kaiserslautern/Germany
e PACT XPP — PACT XPP Technologies AG, Munich/Germany

PACT XPP Dataflow Array
e Optimized for signal/image processing codes
e Data stream synchronization in hardware (handshake protocol)

a e
_ NI 7 R 7 7 % 7 11«
ibe—T—— | <v = vm VVE vw vm vE v >
y 7 y A K y A

g ] | o] | o] | o] | ] | [

id & ) 4 v \ 4 \ 4 v \ 4 \ 4
NI 7 7 A 7 A 11«
4\7 = vw ww vw vw ww v >

TN < <
e e o g e i e i
:> KMUL7 KMUL KMUL ML S 3 3 e 7S ey
v 7 ) 4 \ 4 ) 4 ) 4 h 4 v
N I:ln' AT AT A AT X I:|A<
% ﬁ <v = vw vm vw vw vm v >
E!l:' ADD N l:ln' AT A A AT A \:|A<
4v = vU vm wm vU vm v I >
< X - L
Reconfiguration
S—} iy

RAM-PAEs and ALU-PAEs
(Processing Array Elements)

HHHHHHHHHHHHHHHHHHHH
\\\\\\\\\\\



CGRAs for Embedded Systems: Single-Context (cont‘d)

PACT XPP Dataflow Array (cont‘d)

e Single context (i. e. configuration of PAEs/bus connects) running at a time

e Fast, partial reconfiguration (in p-secs), overlapping with execution
(configuration stored outside CGRA and loaded sequentially)

e Local buffer memories / FIFOs typically used for intermediate results
—> uses fast SRAM (on-chip or off-chip)

e Reconfiguration after larger phases (e. g. in MPEG decoder)

Caonfiguration
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Reference:;

V. Baumgarte, G. Ehlers, F. May, A. Ntuckel, M. Vorbach, and M. Weinhardt: PACT XPP - A
Self-Reconfigurable Data Processing Architecture, Journal of Supercomputing, Vol. 26, No. 2,
Sept. 2003, Kluwer Academic Publishers
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CGRAs for Embedded Systems: Multi-Context

» Problem with single-context CGRA

e Large DFGs must be split into several configurations
—> reconfiguration overhead, buffer memory required

e Cyclic DFGs (accumulators etc.) reduce throughput/effective PE utilization
» Solution: Multi-context CGRA

e Every PE locally stores several instructions (contexts) which can be changed
every cycle (single-cycle configuration); local register file for data reuse/
feedback

-> large DFGs fit on smaller array (with reduced throughput)

Seminal work: ADRES Template (IMEC, Belgium)
e bought and used by Samsung!

e new compilation methods (e. g. DRESC based on modulo-scheduling) were
developed for multi-context CGRAS

Reference:

B. Mei, S. Vernalde, D. Verkest, H. D. Man and R. Lauwereins, ADRES: An Architecture
with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix, in Proc.
13th Intern. Conference on Field-Programmable Logic and Applications, FPL 2003
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CGRAs for Embedded Systems: Multi-Context (cont‘d)

VLIW View

ADRES Template (cont’d) r-———————==-
l Instruction Dispatch I
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(a) (b)

« ALU (FU) performs integer operations in one cycle

« DRESC compiler maps (several) operations to one PE (RC) at different
time steps (contexts). Scheduler cycles through contexts (in lock-step).

* Results are stored in local register file (for reuse/feedback cycles) and/or
forwarded to neighboring PEs.

« Uses modulo routing resource graph (MRRG) for scheduling and simulated
annealing for placement.
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CGRAs for High-Performance Computing:
Challenges



CGRAs for HPC: Challenges
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» Support for Floating-Point Operations

e Older CGRAs provide no or limited support for FP operations (e. g. by
combination of two integer ALUS)
- Extend CGRAs with Floating-Point Units (FPUSs)

e Hardware and compiler must handle multi-cycle operations (with and without
pipelining) or operations with varying latency (e. g. FP division)
- no simple, predictable schedule

» High Memory-Bandwidth Requirements

e CGRA must be integrated in memory hierarchy of host system and/or access
(large) DRAM blocks
—> varying memory access time must be handled
—> no static, fixed schedules, or complete CGRA halt required when memory
stalls

e Complex address generation for multi-dimensional array accesses required
- Dedicated Address-Generator Units (AGUSs) save precious PEs with
FPUs for FP computations

» Irregular Codes (e.g. graph algorithms)
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HIPReP:

High-Performance Reconfigurable Processor



HiPReP: High-Performance Reconfigurable Processor

» Project at Osnabriick UAS (funded by German Research Found. - DFG)

» Goals:

e Hardware design and C compiler for CGRA with FPUs
e Combining ideas from ADRES and XPP

» Firstidea:
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HiPReP Architecture Template — Array Architecture

CGRA template: EX

» Direct communication with 8 [oon
nearest neighbors (bidirectional
32-bit channels)

» All connections auto-synchronize
via handshake signals

» Streamed load/store:
Memory accessed by AGUS,
—> array access for two nested
loops vt
Read-AGUs: Can broadcast to
entire row (Row 0-2) or column
(Col 0-2), respectively
Write-AGUSs: Connected to
rightmost PEs only (Out 0 -2)

‘ Col0

‘ Row 0
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HiPReP Architecture Template — Memory Access

» Arbiters combine AGUs to channels, connect to host/memory system
» Same buses also used to configure context memories
» Scalable # of channels, e.g. 4x4 CGRA with 2 read and 1 write channel:

AGU Col 3= Address: =
AGU Col 2 ™ .
AGUCol 1= — 2P ! ?:a:ir .
AGU Col 0 = ontrot:

I Queue: B
AGU Row 0 —F =

AGU Row 1l =} =
AGU Row 2 —|- » —’)))_;

AGU Row 3

el [t

!

<«— AGU Out 0

, “AGUOut1

i U I «— AGU Out 2
Read Read Write <«— AGU Out 3

channel O|channel 1jchannel O

Connection to Host Memory System
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CHIPReP C Compiler

» Based on LLVM and CCF compilation frameworks

» Annotated inner loops (A) mapped to Data Dependence Graph (B) and
split into execution part (C), mapped to PEs, and memory-movement
part (D), mapped to AGUs

» Clustering heuristic combines DDG nodes in one PE (increases PE
utilization, but decreases throughput!)

» Combined Placement, Routing and Pipeline Balancing maps clusters on
PEs and memory accesses on AGUs (E), optimized by Simulated
Annealing

» Code Generatlon (ons @
777777777777777777777 ' b*K c*P
for (nt <o, e ) | [ CTERESMBESD> Mapping+codes generaton i

a[i] = b[i*K + c[i]*P;

» HOCHSCHULE OSNABRUCK
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HiPReP Architecture Template — Processing Element (PE)

>

»  HOCHSCI
IIIERSH

Differs from usual CGRA-PEs

- 32-bit integer ALU and single-precision, pipelined Floating-Point Unit

- Fused-Multiply Add (FMA) operator (for mul-add/mul-acc operations),
3rd operand from dedicated register, not as general as opds. 1 and 2!

Homogenous and heterogeneous array can be generated/synthesized

Each PE has private context memory, executes 32-bit RISC-like
Instructions = independent control flow (not in lock-step)

Register File (32 32-bit registers):

e Input operands are read from internal register file or output registers
of neighboring PEs

e PE's output written to internal register file or output registers

Hazard detector (comparable to scoreboard) used for synchronizing
operations with varying latencies (in-order issue/out-of-order completion)

Instruction Set supports comparisons, conditional/unconditional jJumps
(no predicated instructions!), zero-delay jumps for infinite loops

UUUUUUUUUUUUU
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HiPReP Architecture Template — Processing Element (PE)

PE Components

» FMA Unit performs FP instruc-
tions (add, sub, mul, cmp, macc,
fma, fms, int2fp, fp2int)

» RAW Detector enforces RAW
dependences

» Write Hazard Detector enforces
correct out-of-order completion

References:

P. Kasgen, M. Weinhardt, C. Hochberger:

» A Coarse-Grained Reconfigurable Array
for High-Performance Computing Appli-
cations, Intern. Conf. on ReConFigurable
Computing and FPGAs (ReConFig), 2018

« Dynamic Scheduling of Pipelined
Functional Units in Coarse-Grained
Reconfigurable Array Elements, Intern.
Conf. on Architecture of Computing
Systems (ARCS 2019), 2019
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Integration in Rocket Chip / Synthesis Results

. i HiPReP Core (synthesizable Chisel
BOOM || |5 [IROCSH | || Focke! | Luis NN model) used as RoCC Accelerator
1 U ey Accal | | —> direct access to L1 cache!
I 1 (i.e. 1 read and 1 write channel
} } combined)
L1toL2 Network A
¢¢I‘ i B [Cache Synthesis Results
i i q C NN\ 3x3 CGRA including AGUs,
| [ 2% Bank SEE D | Tie Synopsys Design Compiler on
T c Bk UMC 65 nm LL process:
° "~ 2
L2tolO Network F |Periph. Area: 1 mm
: * Frequency: ~ 770 MHz
R “'EEL;';‘(E:""‘ y (wireload model WL20)
Y
AXl4 Crossbar
v v '
DRAM High- AHB & APB source:
Controller | | . Speed Peripherals K. Asanovi et al.: The Rocket Chip Generator, UC
10 Device Berkeley, Tech. Report No. UCB/EECS-2017-17
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Related Work, Future Work and Conclusion



Related Work, Future Work and Conclusion

» Related Work: Riken High-Performance CGRA (RHP-CGRA)

e 1:1 mapping of DFG to PEs
High memory-bandwidth through Address Generators (AGs) connected to

external memory via Memory Controllers and Interconnect Network
Tiles of CGRAs and On-Chip SRAM envisioned

Reference:
A. Podobas, K. Sano, S. Matsuoka: A Template-based Framework for Exploring Coarse-

Grained Reconfigurable Architectures, Proc. Intern. Conf. on Application-Specific Systems,
Architectures and Processors (ASAP) 2020

» Future Work (HiPReP)
e Increase memory bandwidth with individual D-caches (or with

scratchpad memory) for several memory channels
e Benchmark Analysis and Design Space Exploration

» Conclusion
e There are promising approaches to extend CGRAs to HPC, but no
complete, ready-to-use system avalable yet.
=» Especially solutions for irregular code are lacking!

20



THE END

Thank you for
your attention!

Any questions?

Challenges of Advancing CGRAs from Embedded to High-Performance Computin
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