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CGRAs for Embedded Systems



CGRAs for Embedded Systems

Basic Principles of CGRAs

► Alternative to multicore processors for exploiting instruction-level and 

loop-level parallelism

► 2D array of Processing Elements containing ALUs and interconnect

► Similar to FPGAs, but with ALUs instead of look-up tables, word-wide 

instead of bit-wide connections

► In most cases, dataflow graphs (DFGs) of inner loop kernels are mapped 

to the Processing Elements (PEs)

• Parallelization/Vectorization required to enable loop pipelining!

Implementation

► As ASIC or part of a SoC

► As FPGA overlay („Virtual CGRA“)

➔ flexible, but less efficient (introduces another configuration layer)
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CGRAs for Embedded Systems: Single-Context

► Early CGRAs directly mapped DFGs to ALUs (1:1), aiming at a balanced 

pipeline → high parallelism, high throughput

• Placement and Routing similar to FPGA tools

► Examples

• Xputer (rDPU/KressArray) – Prof. Hartenstein, Univ. Kaiserslautern/Germany

• PACT XPP – PACT XPP Technologies AG, Munich/Germany

PACT XPP Dataflow Array

• Optimized for signal/image processing codes

• Data stream synchronization in hardware (handshake protocol)
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Reconfiguration

RAM-PAEs and ALU-PAEs

(Processing Array Elements)



CGRAs for Embedded Systems: Single-Context (cont‘d)

PACT XPP Dataflow Array (cont‘d)

• Single context (i. e. configuration of PAEs/bus connects) running at a time

• Fast, partial reconfiguration (in µ-secs), overlapping with execution

(configuration stored outside CGRA and loaded sequentially)

• Local buffer memories / FIFOs typically used for intermediate results

→ uses fast SRAM (on-chip or off-chip)

• Reconfiguration after larger phases (e. g. in MPEG decoder)

Reference:

V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt: PACT XPP - A 

Self-Reconfigurable Data Processing Architecture, Journal of Supercomputing, Vol. 26, No. 2, 

Sept. 2003, Kluwer Academic Publishers
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CGRAs for Embedded Systems: Multi-Context

► Problem with single-context CGRA

• Large DFGs must be split into several configurations

→ reconfiguration overhead, buffer memory required

• Cyclic DFGs (accumulators etc.) reduce throughput/effective PE utilization

► Solution: Multi-context CGRA

• Every PE locally stores several instructions (contexts) which can be changed 

every cycle (single-cycle configuration); local register file for data reuse/ 

feedback

→ large DFGs fit on smaller array (with reduced throughput)

Seminal work: ADRES Template (IMEC, Belgium)

• bought and used by Samsung!

• new compilation methods (e. g. DRESC based on modulo-scheduling) were 

developed for multi-context CGRAs
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Reference:

B. Mei, S. Vernalde, D. Verkest, H. D. Man and R. Lauwereins, ADRES: An Architecture 

with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix, in Proc. 

13th Intern. Conference on Field-Programmable Logic and Applications, FPL 2003



CGRAs for Embedded Systems: Multi-Context (cont‘d)
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ADRES Template (cont’d)

Source: 

FPL 2003
Reconfigurable Cell (RC)

• ALU (FU) performs integer operations in one cycle

• DRESC compiler maps (several) operations to one PE (RC) at different 

time steps (contexts). Scheduler cycles through contexts (in lock-step).

• Results are stored in local register file (for reuse/feedback cycles) and/or 

forwarded to neighboring PEs.

• Uses modulo routing resource graph (MRRG) for scheduling and simulated 

annealing for placement.
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CGRAs for HPC: Challenges

► Support for Floating-Point Operations

• Older CGRAs provide no or limited support for FP operations (e. g. by 

combination of two integer ALUs)

→ Extend CGRAs with Floating-Point Units (FPUs)

• Hardware and compiler must handle multi-cycle operations (with and without 

pipelining) or operations with varying latency (e. g. FP division)

→ no simple, predictable schedule

► High Memory-Bandwidth Requirements

• CGRA must be integrated in memory hierarchy of host system and/or access 

(large) DRAM blocks

→ varying memory access time must be handled

→ no static, fixed schedules, or complete CGRA halt required when memory

     stalls

• Complex address generation for multi-dimensional array accesses required

→ Dedicated Address-Generator Units (AGUs) save precious PEs with

    FPUs for FP computations

► Irregular Codes (e.g. graph algorithms)
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HiPReP: High-Performance Reconfigurable Processor

► Project at Osnabrück UAS (funded by German Research Found. - DFG)

► Goals:

• Hardware design and C compiler for CGRA with FPUs

• Combining ideas from ADRES and XPP

► First idea:
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HiPReP Architecture Template – Array Architecture

CGRA template:

► Direct communication with 8

nearest neighbors (bidirectional

32-bit channels)

► All connections auto-synchronize

via handshake signals

► Streamed load/store:

Memory accessed by AGUs,

→ array access for two nested

    loops

Read-AGUs: Can broadcast to

   entire row (Row 0-2) or column

   (Col 0-2), respectively

Write-AGUs: Connected to

   rightmost PEs only (Out 0 -2)
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HiPReP Architecture Template – Memory Access

► Arbiters combine AGUs to channels, connect to host/memory system

► Same buses also used to configure context memories

► Scalable # of channels, e.g. 4x4 CGRA with 2 read and 1 write channel:
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CHiPReP C Compiler
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► Based on LLVM and CCF compilation frameworks

► Annotated inner loops (A) mapped to Data Dependence Graph (B) and 

split into execution part (C), mapped to PEs, and memory-movement 

part (D), mapped to AGUs

► Clustering heuristic combines DDG nodes in one PE (increases PE 

utilization, but decreases throughput!)

► Combined Placement, Routing and Pipeline Balancing maps clusters on 

PEs and memory accesses on AGUs (E), optimized by Simulated 

Annealing

► Code Generation
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HiPReP Architecture Template – Processing Element (PE)
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► Differs from usual CGRA-PEs

→ 32-bit integer ALU and single-precision, pipelined Floating-Point Unit

→ Fused-Multiply Add (FMA) operator (for mul-add/mul-acc operations),

    3rd operand from dedicated register, not as general as opds. 1 and 2!

► Homogenous and heterogeneous array can be generated/synthesized

► Each PE has private context memory, executes 32-bit RISC-like 

instructions → independent control flow (not in lock-step)

► Register File (32 32-bit registers):

• Input operands are read from internal register file or output registers 

of neighboring PEs

• PE's output written to internal register file or output registers

► Hazard detector (comparable to scoreboard) used for synchronizing 

operations with varying latencies (in-order issue/out-of-order completion)

► Instruction Set supports comparisons, conditional/unconditional jumps 

(no predicated instructions!), zero-delay jumps for infinite loops
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HiPReP Architecture Template – Processing Element (PE)
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PE Components

► FMA Unit performs FP instruc-

tions (add, sub, mul, cmp, macc, 

fma, fms, int2fp, fp2int)

► RAW Detector enforces RAW 

dependences

► Write Hazard Detector enforces 

correct out-of-order completion

References:

P. Käsgen, M. Weinhardt, C. Hochberger: 

• A Coarse-Grained Reconfigurable Array 

for High-Performance Computing Appli-

cations, Intern. Conf. on ReConFigurable

Computing and FPGAs (ReConFig), 2018

• Dynamic Scheduling of Pipelined 

Functional Units in Coarse-Grained 

Reconfigurable Array Elements, Intern. 

Conf. on Architecture of Computing 

Systems (ARCS 2019), 2019 



Integration in Rocket Chip / Synthesis Results
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Source:

K. Asanovi et al.: The Rocket Chip Generator, UC 

Berkeley, Tech. Report No. UCB/EECS-2017-17

HiPReP Core (synthesizable Chisel 

model) used as RoCC Accelerator

→ direct access to L1 cache!

     (i.e. 1 read and 1 write channel

     combined) 

Synthesis Results

3x3 CGRA including AGUs, 

Synopsys Design Compiler on 

UMC 65 nm LL process:

• Area: ~ 1 mm2

• Frequency: ~ 770 MHz

(wireload model WL20)
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Related Work, Future Work and Conclusion

20

► Related Work: Riken High-Performance CGRA (RHP-CGRA)

• 1:1 mapping of DFG to PEs

• High memory-bandwidth through Address Generators (AGs) connected to 

external memory via Memory Controllers and Interconnect Network

• Tiles of CGRAs and On-Chip SRAM envisioned

 

► Future Work (HiPReP)

• Increase memory bandwidth with individual D-caches (or with 

scratchpad memory) for several memory channels

• Benchmark Analysis and Design Space Exploration

► Conclusion

• There are promising approaches to extend CGRAs to HPC, but no 

complete, ready-to-use system avalable yet.

➔ Especially solutions for irregular code are lacking!

Challenges of Advancing CGRAs from Embedded to High-Performance Computing

Reference:

A. Podobas, K. Sano, S. Matsuoka: A Template-based Framework for Exploring Coarse-

Grained Reconfigurable Architectures, Proc. Intern. Conf. on Application-Specific Systems, 

Architectures and Processors (ASAP) 2020
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THE END

Thank you for

your attention!

Any questions?
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