<« » HOCHSCHULE OSNABRUCK

UNIVERSITY OF APPLIED SCIENCES

Challenges of Advancing Coarse-Grained
Reconfigurable Arrays from Embedded to
High-Performance Computing

Markus Weinhardt

CGRA4HPC’23 - St. Petersburg/FL, USA - May 15, 2023

Outline

» CGRAs for Embedded Systems

» CGRAs for High-Performance Computing:
Challenges

» HIPReP:
High-Performance Reconfigurable Processor

» Related Work, Future Work and Conclusion

HHHHHHHHHHHHHHHHHHHH
INAERSITY 37 427 [C SEIZNETS

CGRAs for Embedded Systems

CGRAs for Embedded Systems

Basic Principles of CGRAS

>

Alternative to multicore processors for exploiting instruction-level and
loop-level parallelism

2D array of Processing Elements containing ALUs and interconnect

Similar to FPGAs, but with ALUs instead of look-up tables, word-wide
instead of bit-wide connections

In most cases, dataflow graphs (DFGs) of inner loop kernels are mapped
to the Processing Elements (PESs)

e Parallelization/Vectorization required to enable loop pipelining!

Implementation
» As ASIC or part of a SoC
» As FPGA overlay (,Virtual CGRA")

HHHHHHHH

=>» flexible, but less efficient (introduces another configuration layer)

UUUUUUUUUUUU
‘‘‘‘‘

CGRAs for Embedded Systems: Single-Context

» Early CGRAs directly mapped DFGs to ALUs (1:1), aiming at a balanced
pipeline = high parallelism, high throughput
e Placement and Routing similar to FPGA tools
» Examples
o Xputer (rDPU/KressArray) — Prof. Hartenstein, Univ. Kaiserslautern/Germany
e PACT XPP — PACT XPP Technologies AG, Munich/Germany

PACT XPP Dataflow Array
e Optimized for signal/image processing codes
e Data stream synchronization in hardware (handshake protocol)

a e
_ NI 7 R 7 7 % 7 11«
ibe—T—— | <v = vm VVE vw vm vE v >
y 7 y A K y A

g] | o] | o] | o] |] | [

id &) 4 v \ 4 \ 4 v \ 4 \ 4
NI 7 7 A 7 A 11«
4\7 = vw ww vw vw ww v >

TN < <
e e o g e i e i
:> KMUL7 KMUL KMUL ML S 3 3 e 7S ey
v 7) 4 \ 4) 4) 4 h 4 v
N I:ln' AT AT A AT X I:|A<
% ﬁ <v = vw vm vw vw vm v >
E!l:' ADD N l:ln' AT A A AT A \:|A<
4v = vU vm wm vU vm v I >
< X - L
Reconfiguration
S—} iy

RAM-PAEs and ALU-PAEs
(Processing Array Elements)

HHHHHHHHHHHHHHHHHHHH
\\\\\\\\\\\

CGRAs for Embedded Systems: Single-Context (cont‘d)

PACT XPP Dataflow Array (cont‘d)

e Single context (i. e. configuration of PAEs/bus connects) running at a time

e Fast, partial reconfiguration (in p-secs), overlapping with execution
(configuration stored outside CGRA and loaded sequentially)

e Local buffer memories / FIFOs typically used for intermediate results
—> uses fast SRAM (on-chip or off-chip)

e Reconfiguration after larger phases (e. g. in MPEG decoder)

Caonfiguration

@ﬁﬁﬁb'@*ﬁmﬂ@w El
5‘@5 plbe o
eehgdgeng b copl
TR

Reference:;

V. Baumgarte, G. Ehlers, F. May, A. Ntuckel, M. Vorbach, and M. Weinhardt: PACT XPP - A
Self-Reconfigurable Data Processing Architecture, Journal of Supercomputing, Vol. 26, No. 2,
Sept. 2003, Kluwer Academic Publishers

HHHHHHHHHHHHHHHHHHHH
\\\\\\\\\\\\

CGRAs for Embedded Systems: Multi-Context

» Problem with single-context CGRA

e Large DFGs must be split into several configurations
—> reconfiguration overhead, buffer memory required

e Cyclic DFGs (accumulators etc.) reduce throughput/effective PE utilization
» Solution: Multi-context CGRA

e Every PE locally stores several instructions (contexts) which can be changed
every cycle (single-cycle configuration); local register file for data reuse/
feedback

-> large DFGs fit on smaller array (with reduced throughput)

Seminal work: ADRES Template (IMEC, Belgium)
e bought and used by Samsung!

e new compilation methods (e. g. DRESC based on modulo-scheduling) were
developed for multi-context CGRAS

Reference:

B. Mei, S. Vernalde, D. Verkest, H. D. Man and R. Lauwereins, ADRES: An Architecture
with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix, in Proc.
13th Intern. Conference on Field-Programmable Logic and Applications, FPL 2003

HHHHHHHHHHHHHHHHHHHH
\\\\\\\\\\\

CGRAs for Embedded Systems: Multi-Context (cont‘d)

VLIW View

ADRES Template (cont’d) r-———————==-
l Instruction Dispatch I
Instruction Decode I
|iropessss=s== RegsterFile |1 |
I} Fodro Fo LR
i I e
 H{reliTreT{Re [fReT[Re RC]
S | | { lrre e] lre) Hre R Lire |
egister . ' =: = = = n :
i Fie iy 2 W re |1 re |l rRe I RE [RC
chea_&c:eé_,L dst T 4 =] = i !
A | e[[re]l[re) [re][[re | Re:
configuration %J §_| R L[re]L[re]L[re|L[re|L[Re ; Source:
_ o able Vst View FPL 2003
Reconfigurable Cell (RC)
(a) (b)

« ALU (FU) performs integer operations in one cycle

« DRESC compiler maps (several) operations to one PE (RC) at different
time steps (contexts). Scheduler cycles through contexts (in lock-step).

* Results are stored in local register file (for reuse/feedback cycles) and/or
forwarded to neighboring PEs.

« Uses modulo routing resource graph (MRRG) for scheduling and simulated
annealing for placement.

HHHHHHHHHHHHHHHHHHHH
CRSITY OF 422.ICE SCITNEIS

CGRAs for High-Performance Computing:
Challenges

CGRAs for HPC: Challenges

HHHHHHHHHHHHHHHHHHHH
INAERSITY 37 427 [C SEIZNETS

» Support for Floating-Point Operations

e Older CGRAs provide no or limited support for FP operations (e. g. by
combination of two integer ALUS)
- Extend CGRAs with Floating-Point Units (FPUSs)

e Hardware and compiler must handle multi-cycle operations (with and without
pipelining) or operations with varying latency (e. g. FP division)
- no simple, predictable schedule

» High Memory-Bandwidth Requirements

e CGRA must be integrated in memory hierarchy of host system and/or access
(large) DRAM blocks
—> varying memory access time must be handled
—> no static, fixed schedules, or complete CGRA halt required when memory
stalls

e Complex address generation for multi-dimensional array accesses required
- Dedicated Address-Generator Units (AGUSs) save precious PEs with
FPUs for FP computations

» Irregular Codes (e.g. graph algorithms)

10

HIPReP:

High-Performance Reconfigurable Processor

HiPReP: High-Performance Reconfigurable Processor

» Project at Osnabriick UAS (funded by German Research Found. - DFG)

» Goals:

e Hardware design and C compiler for CGRA with FPUs
e Combining ideas from ADRES and XPP

» Firstidea:

\l/\ll\l/ \lf\lf\l/ \]/\]/\l/ EX,
MUX MUX MUX f=»\ MUX [
A B C
R CE;‘,E‘;“,’;‘ "\ FMA-FPU
2um und FSM
f;?:ng:— Reg. File
Speicher
v Vv

Processing Element

Konfigurations-Speicher

4x4 HiPReP-Kernel

k'

AG1 AG2 AG3 AG4
3 7 o — Leseports
A
rRd1 P raz KB Raz KB Raa ()
':“T"“‘ """ A B ““¢“'“'““¢“;“:
¥ ¥ ¥ ¥ i
)) 1
PE11 <3| PE12 PE13 [<3] PE14 [«
[~ ™~ 1
¥ ¥ ¥ ¥ E
v v v v . o
L2 <
PE21 > PE22 > PE23 >| PE24 I c QO
1 (aF] -
| & %
¥ — v v ¥ = o
¥ ¥ 07 ¥ i — UI.‘
H]
N N N ik ch
PE31 PE32 [PE33 |15 PE34 [S | O
1 G (0]
2 v v ¥ i O
¥ ¥ 7 7 i
1
PE41 [«>| PE42 5| PE43 5| PE44 [«
— — v ¥ v _ :
1
-----i—----. ______ t _____ - ——-—¢———-—--——-¢—-——-J
L) N > >
Wr1 ¢> Wr2 ¢> Wr3 ¢> Wr4 <":>

Schreibports

12

HiPReP Architecture Template — Array Architecture

CGRA template: EX

» Direct communication with 8 [oon
nearest neighbors (bidirectional
32-bit channels)

» All connections auto-synchronize
via handshake signals

» Streamed load/store:
Memory accessed by AGUS,
—> array access for two nested
loops vt
Read-AGUs: Can broadcast to
entire row (Row 0-2) or column
(Col 0-2), respectively
Write-AGUSs: Connected to
rightmost PEs only (Out 0 -2)

‘ Col0

‘ Row 0

HHHHHHHHHHHHHHHHHHHH
INAERSITY 37 427 [C SEIZNETS

PEO D

11

L4

PEO 1

§
il
v

Y

PE1O

11

b e

PE11

b

VAl X

PE2 0

PE21

@
<]

i

3x3 CGRA

13

HiPReP Architecture Template — Memory Access

» Arbiters combine AGUs to channels, connect to host/memory system
» Same buses also used to configure context memories
» Scalable # of channels, e.g. 4x4 CGRA with 2 read and 1 write channel:

AGU Col 3= Address: =
AGU Col 2 ™ .
AGUCol 1= — 2P ! ?:a:ir .
AGU Col 0 = ontrot:

I Queue: B
AGU Row 0 —F =

AGU Row 1l =} =
AGU Row 2 —|- » —’)))_;

AGU Row 3

el [t

!

<«— AGU Out 0

, “AGUOut1

i U I «— AGU Out 2
Read Read Write <«— AGU Out 3

channel O|channel 1jchannel O

Connection to Host Memory System

HHHHHHHHHHHHHHHHHHH
INAERSITY 37 427 [C SEIZNETS

CHIPReP C Compiler

» Based on LLVM and CCF compilation frameworks

» Annotated inner loops (A) mapped to Data Dependence Graph (B) and
split into execution part (C), mapped to PEs, and memory-movement
part (D), mapped to AGUs

» Clustering heuristic combines DDG nodes in one PE (increases PE
utilization, but decreases throughput!)

» Combined Placement, Routing and Pipeline Balancing maps clusters on
PEs and memory accesses on AGUs (E), optimized by Simulated
Annealing

» Code Generatlon (ons @
777777777777777777777 ' b*K c*P
for (nt <o, e) | [CTERESMBESD> Mapping+codes generaton i

a[i] = b[i*K + c[i]*P;

» HOCHSCHULE OSNABRUCK
15

HiPReP Architecture Template — Processing Element (PE)

>

» HOCHSCI
IIIERSH

Differs from usual CGRA-PEs

- 32-bit integer ALU and single-precision, pipelined Floating-Point Unit

- Fused-Multiply Add (FMA) operator (for mul-add/mul-acc operations),
3rd operand from dedicated register, not as general as opds. 1 and 2!

Homogenous and heterogeneous array can be generated/synthesized

Each PE has private context memory, executes 32-bit RISC-like
Instructions = independent control flow (not in lock-step)

Register File (32 32-bit registers):

e Input operands are read from internal register file or output registers
of neighboring PEs

e PE's output written to internal register file or output registers

Hazard detector (comparable to scoreboard) used for synchronizing
operations with varying latencies (in-order issue/out-of-order completion)

Instruction Set supports comparisons, conditional/unconditional jJumps
(no predicated instructions!), zero-delay jumps for infinite loops

UUUUUUUUUUUUU
‘‘‘‘‘

16

HiPReP Architecture Template — Processing Element (PE)

PE Components

» FMA Unit performs FP instruc-
tions (add, sub, mul, cmp, macc,
fma, fms, int2fp, fp2int)

» RAW Detector enforces RAW
dependences

» Write Hazard Detector enforces
correct out-of-order completion

References:

P. Kasgen, M. Weinhardt, C. Hochberger:

» A Coarse-Grained Reconfigurable Array
for High-Performance Computing Appli-
cations, Intern. Conf. on ReConFigurable
Computing and FPGAs (ReConFig), 2018

« Dynamic Scheduling of Pipelined
Functional Units in Coarse-Grained
Reconfigurable Array Elements, Intern.
Conf. on Architecture of Computing
Systems (ARCS 2019), 2019

AN T Decoder'
configure i ecoder,
7/ ! |
: next PC|
< . PC
Context Memory :
1
I
configuration data% : 4;
I
I
I Fetched Context
PE Inputs < ==q] |
I
—————————————————————— 1
Register File Module '
I

reset

RAW

Detector

Decode

\/

AR

= > Register File

Write @ %
Hazard M
Detector ux
write data
write address v
———">5 PE Outputs

17

Integration in Rocket Chip / Synthesis Results

. i HiPReP Core (synthesizable Chisel
BOOM || |5 [IROCSH | || Focke! | Luis NN model) used as RoCC Accelerator
1 U ey Accal | | —> direct access to L1 cache!
I 1 (i.e. 1 read and 1 write channel
} } combined)
L1toL2 Network A
¢¢I‘ i B [Cache Synthesis Results
i i q C NN\ 3x3 CGRA including AGUs,
| [2% Bank SEE D | Tie Synopsys Design Compiler on
T c Bk UMC 65 nm LL process:
° "~ 2
L2tolO Network F |Periph. Area: 1 mm
: * Frequency: ~ 770 MHz
R “'EEL;';‘(E:""‘ y (wireload model WL20)
Y
AXl4 Crossbar
v v '
DRAM High- AHB & APB source:
Controller | | . Speed Peripherals K. Asanovi et al.: The Rocket Chip Generator, UC
10 Device Berkeley, Tech. Report No. UCB/EECS-2017-17

HHHHHHHHHHHHHHHHHH
INAERSITY 37 427 [C SEIZNETS

CK

18

Related Work, Future Work and Conclusion

Related Work, Future Work and Conclusion

» Related Work: Riken High-Performance CGRA (RHP-CGRA)

e 1:1 mapping of DFG to PEs
High memory-bandwidth through Address Generators (AGs) connected to

external memory via Memory Controllers and Interconnect Network
Tiles of CGRAs and On-Chip SRAM envisioned

Reference:
A. Podobas, K. Sano, S. Matsuoka: A Template-based Framework for Exploring Coarse-

Grained Reconfigurable Architectures, Proc. Intern. Conf. on Application-Specific Systems,
Architectures and Processors (ASAP) 2020

» Future Work (HiPReP)
e Increase memory bandwidth with individual D-caches (or with

scratchpad memory) for several memory channels
e Benchmark Analysis and Design Space Exploration

» Conclusion
e There are promising approaches to extend CGRAs to HPC, but no
complete, ready-to-use system avalable yet.
=» Especially solutions for irregular code are lacking!

20

THE END

Thank you for
your attention!

Any questions?

Challenges of Advancing CGRAs from Embedded to High-Performance Computin

	Folie 1: Challenges of Advancing Coarse-Grained Reconfigurable Arrays from Embedded to High-Performance Computing
	Folie 2: Outline
	Folie 3: CGRAs for Embedded Systems
	Folie 4: CGRAs for Embedded Systems
	Folie 5: CGRAs for Embedded Systems: Single-Context
	Folie 6: CGRAs for Embedded Systems: Single-Context (cont‘d)
	Folie 7: CGRAs for Embedded Systems: Multi-Context
	Folie 8: CGRAs for Embedded Systems: Multi-Context (cont‘d)
	Folie 9: CGRAs for High-Performance Computing: Challenges
	Folie 10: CGRAs for HPC: Challenges
	Folie 11: HiPReP: High-Performance Reconfigurable Processor
	Folie 12: HiPReP: High-Performance Reconfigurable Processor
	Folie 13: HiPReP Architecture Template – Array Architecture
	Folie 14: HiPReP Architecture Template – Memory Access
	Folie 15: CHiPReP C Compiler
	Folie 16: HiPReP Architecture Template – Processing Element (PE)
	Folie 17: HiPReP Architecture Template – Processing Element (PE)
	Folie 18: Integration in Rocket Chip / Synthesis Results
	Folie 19: Related Work, Future Work and Conclusion
	Folie 20: Related Work, Future Work and Conclusion
	Folie 21: THE END

